Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Child Neurol ; : 8830738241246703, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38659405

RESUMO

GM2 gangliosidoses (GM2) are a group of rare lysosomal storage disorders in which accumulation of GM2 gangliosides results in progressive central nervous system damage. The infantile GM2 phenotype is characterized by delays in milestones by 6 months of age, followed by rapid loss of motor, cognitive, and visual function. Advancements in early diagnosis and pharmacotherapies provide promise for improved outcomes. However, the lack of feasible and clinically meaningful clinical outcome assessments for GM2 poses a challenge to characterizing GM2 natural history and selecting clinical trial endpoints. The purpose of this study was to develop a remotely administered infantile GM2 rating scale to measure health-related function in children with infantile GM2. A 2-phase mixed methods design was employed. In phase 1 of the study, 8 families of children with Infantile GM2 completed a natural history survey and a 1:1 semistructured interview to provide caregiver perspectives on the impacts of GM2 on health-related function. In phase 2 of the study, 8 expert clinicians provided feedback via surveys and participated in videoconference-hosted focus groups to refine scale administration and scoring procedures. These methods guided the development of 16 scale items to assess function in 5 health-related function domains: vision, hand and arm use, communication, gross motor, and feeding. This study used caregiver perspectives and expert clinician feedback to develop a remotely administered clinical outcome assessment of clinically meaningful health-related function in children with infantile GM2. Future studies will further evaluate the feasibility, reliability, and validity of the Infantile GM2 Clinical Rating Scale.

2.
Cytotherapy ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613540

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.

3.
Mol Genet Metab ; 142(1): 108453, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38522179

RESUMO

Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.

4.
Eur J Paediatr Neurol ; 49: 141-154, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554683

RESUMO

INTRODUCTION: Metachromatic leukodystrophy (MLD) is a rare autosomal recessive lysosomal storage disorder resulting from arylsulfatase A enzyme deficiency, leading to toxic sulfatide accumulation. As a result affected individuals exhibit progressive neurodegeneration. Treatments such as hematopoietic stem cell transplantation (HSCT) and gene therapy are effective when administered pre-symptomatically. Newborn screening (NBS) for MLD has recently been shown to be technically feasible and is indicated because of available treatment options. However, there is a lack of guidance on how to monitor and manage identified cases. This study aims to establish consensus among international experts in MLD and patient advocates on clinical management for NBS-identified MLD cases. METHODS: A real-time Delphi procedure using eDELPHI software with 22 experts in MLD was performed. Questions, based on a literature review and workshops, were answered during a seven-week period. Three levels of consensus were defined: A) 100%, B) 75-99%, and C) 50-74% or >75% but >25% neutral votes. Recommendations were categorized by agreement level, from strongly recommended to suggested. Patient advocates participated in discussions and were involved in the final consensus. RESULTS: The study presents 57 statements guiding clinical management of NBS-identified MLD patients. Key recommendations include timely communication by MLD experts with identified families, treating early-onset MLD with gene therapy and late-onset MLD with HSCT, as well as pre-treatment monitoring schemes. Specific knowledge gaps were identified, urging prioritized research for future evidence-based guidelines. DISCUSSION: Consensus-based recommendations for NBS in MLD will enhance harmonized management and facilitate integration in national screening programs. Structured data collection and monitoring of screening programs are crucial for evidence generation and future guideline development. Involving patient representatives in the development of recommendations seems essential for NBS programs.

5.
Orphanet J Rare Dis ; 19(1): 79, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378692

RESUMO

BACKGROUND: TBL1XR1 encodes a F-box-like/WD40 repeat-containing protein that plays a role in transcription mediated by nuclear receptors and is a known genetic cause of neurodevelopmental disease of childhood (OMIM# 608628). Yet the developmental trajectory and progression of neurologic symptoms over time remains poorly understood. METHODS: We developed and distributed a survey to two closed Facebook groups devoted to families of patients with TBL1XR1-related disorder. The survey consisted of 14 subsections focused upon the developmental trajectories of cognitive, behavioral, motor, and other neurological abnormalities. Data were collected and managed using REDCap electronic data capture tools. RESULTS: Caregivers of 41 patients with a TBL1XR1-related disorder completed the cross-sectional survey. All reported variants affecting a single amino acid, including missense mutations and in-frame deletions, were found in the WD40 repeat regions of Tbl1xr1. These are domains considered important for protein-protein interactions that may plausibly underlie disease pathology. The majority of patients were diagnosed with a neurologic condition before they received their genetic diagnosis. Language appeared most significantly affected with only a minority of the cohort achieving more advanced milestones in this domain. CONCLUSION: TBL1XR1-related disorder encompasses a spectrum of clinical presentations, marked by early developmental delay ranging in severity, with a subset of patients experiencing developmental regression in later childhood.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Estudos Transversais , Mutação de Sentido Incorreto/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética
6.
Ann Neurol ; 95(3): 442-458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062617

RESUMO

OBJECTIVE: X-linked adrenoleukodystrophy is caused by mutations in the peroxisomal half-transporter ABCD1. The most common manifestation is adrenomyeloneuropathy, a hereditary spastic paraplegia of adulthood. The present study set out to understand the role of neuronal ABCD1 in mice and humans with adrenomyeloneuropathy. METHODS: Neuronal expression of ABCD1 during development was assessed in mice and humans. ABCD1-deficient mice and human brain tissues were examined for corresponding pathology. Next, we silenced ABCD1 in cholinergic Sh-sy5y neurons to investigate its impact on neuronal function. Finally, we tested adeno-associated virus vector-mediated ABCD1 delivery to the brain in mice with adrenomyeloneuropathy. RESULTS: ABCD1 is highly expressed in neurons located in the periaqueductal gray matter, basal forebrain and hypothalamus. In ABCD1-deficient mice (Abcd1-/y), these structures showed mild accumulations of α-synuclein. Similarly, healthy human controls had high expression of ABCD1 in deep gray nuclei, whereas X-ALD patients showed increased levels of phosphorylated tau, gliosis, and complement activation in those same regions, albeit not to the degree seen in neurodegenerative tauopathies. Silencing ABCD1 in Sh-sy5y neurons impaired expression of functional proteins and decreased acetylcholine levels, similar to observations in plasma of Abcd1-/y mice. Notably, hind limb clasping in Abcd1-/y mice was corrected through transduction of ABCD1 in basal forebrain neurons following intracerebroventricular gene delivery. INTERPRETATION: Our study suggests that the basal forebrain-cortical cholinergic pathway may contribute to dysfunction in adrenomyeloneuropathy. Rescuing peroxisomal transport activity in basal forebrain neurons and supporting glial cells might represent a viable therapeutic strategy. ANN NEUROL 2024;95:442-458.


Assuntos
Adrenoleucodistrofia , Prosencéfalo Basal , Neuroblastoma , Humanos , Animais , Camundongos , Adulto , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Prosencéfalo Basal/metabolismo , Neurônios/metabolismo , Colinérgicos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética
7.
Ann Clin Transl Neurol ; 11(1): 207-224, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009419

RESUMO

OBJECTIVE: Late-onset GM2 gangliosidosis (LOGG) subtypes late-onset Tay-Sachs (LOTS) and Sandhoff disease (LOSD) are ultra-rare neurodegenerative lysosomal storage disorders presenting with weakness, ataxia, and neuropsychiatric symptoms. Previous studies considered LOTS and LOSD clinically indistinguishable; recent studies have challenged this. We performed a scoping review to ascertain whether imaging and clinical features may differentiate these diseases. METHODS: We examined MEDLINE/non-MEDLINE databases up to May 2022. Articles reporting brain imaging findings in genetically/enzymatically confirmed LOGG, symptom onset at age ≥ 10 years (or evaluated at least once ≥18 years) were included, yielding 170 LOGG patients (LOTS = 127, LOSD = 43) across 68 papers. We compared LOTS versus LOSD and performed regression analyses. Results were corrected for multiple comparisons. RESULTS: Age of onset was lower in LOTS versus LOSD (17.9 ± 8.2 vs. 23.9 ± 14.4 years, p = 0.017), although disease duration was similar (p = 0.34). LOTS more commonly had psychosis/bipolar symptoms (35.0% vs. 9.30%, p = 0.011) but less frequent swallowing problems (4.10% vs. 18.60%, p = 0.041). Cerebellar atrophy was more common in LOTS (89.0%) versus LOSD (60.5%), p < 0.0001, with more severe atrophy in LOTS (p = 0.0005). Brainstem atrophy was documented only in LOTS (14.2%). Independent predictors of LOTS versus LOSD (odds ratio [95% confidence interval]) included the presence of psychosis/bipolar symptoms (4.95 [1.59-19.52], p = 0.011), no swallowing symptoms (0.16 [0.036-0.64], p = 0.011), and cerebellar atrophy (5.81 [2.10-17.08], p = 0.0009). Lower age of onset (0.96 [0.93-1.00], p = 0.075) and tremor (2.50 [0.94-7.43], p = 0.078) were marginally statistically significant but felt relevant to include in the model. INTERPRETATION: These data suggest significant differences in symptomatology, disease course, and imaging findings between LOTS and LOSD.


Assuntos
Gangliosidoses GM2 , Doenças Neurodegenerativas , Transtornos Psicóticos , Humanos , Criança , Progressão da Doença , Atrofia , Gangliosidoses GM2/diagnóstico por imagem
8.
EBioMedicine ; 96: 104781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683329

RESUMO

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS: We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS: Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION: Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING: Austrian Science Fund, European Leukodystrophy Association.

9.
J Clin Endocrinol Metab ; 108(11): e1306-e1315, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37220095

RESUMO

CONTEXT: Males with adrenoleukodystrophy (ALD) have an 80% lifetime risk of developing adrenal insufficiency (AI), which can be life-threatening when undetected. Newborn screening (NBS) for ALD has been implemented in 29 states, yet the impact of NBS upon clinical management has not been reported. OBJECTIVE: To investigate whether the implementation of NBS has altered the time to diagnosis of AI in children with ALD. DESIGN: We conducted a retrospective medical chart review of pediatric patients with ALD. SETTING: All patients were seen in a leukodystrophy clinic in an academic medical center. PATIENTS: We included all pediatric patients with ALD who were seen between May 2006 and January 2022. We identified 116 patients (94% boys). MAIN OUTCOME MEASURES: We extracted information about ALD diagnosis in all patients and AI surveillance, diagnosis, and treatment in boys with ALD. RESULTS: Thirty-one (27%) patients were diagnosed with ALD by NBS, and 85 (73%) were diagnosed outside the newborn period. The prevalence of AI among boys in our patient population was 74%. AI diagnosis was made significantly earlier in boys diagnosed with ALD by NBS than in boys diagnosed outside the newborn period (median [IQR] age of diagnosis = 6.7 [3.9, 12.12] months vs 6.05 [3.74, 8.35] years) (P < .001). When maintenance dose of glucocorticoids were initiated, there were significant differences in ACTH and peak cortisol levels in patients diagnosed by NBS and outside the newborn period. CONCLUSIONS: Our results suggest that implementing NBS for ALD leads to significantly earlier detection of AI and earlier initiation of glucocorticoid supplementation in boys affected by ALD.


Assuntos
Insuficiência Adrenal , Adrenoleucodistrofia , Masculino , Recém-Nascido , Humanos , Criança , Feminino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/epidemiologia , Estudos Retrospectivos , Triagem Neonatal/métodos , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/epidemiologia , Diagnóstico Precoce
10.
Nat Commun ; 14(1): 1900, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019892

RESUMO

Blood-brain barrier disruption marks the onset of cerebral adrenoleukodystrophy (CALD), a devastating cerebral demyelinating disease caused by loss of ABCD1 gene function. The underlying mechanism are not well understood, but evidence suggests that microvascular dysfunction is involved. We analyzed cerebral perfusion imaging in boys with CALD treated with autologous hematopoietic stem-cells transduced with the Lenti-D lentiviral vector that contains ABCD1 cDNA as part of a single group, open-label phase 2-3 safety and efficacy study (NCT01896102) and patients treated with allogeneic hematopoietic stem cell transplantation. We found widespread and sustained normalization of white matter permeability and microvascular flow. We demonstrate that ABCD1 functional bone marrow-derived cells can engraft in the cerebral vascular and perivascular space. Inverse correlation between gene dosage and lesion growth suggests that corrected cells contribute long-term to remodeling of brain microvascular function. Further studies are needed to explore the longevity of these effects.


Assuntos
Adrenoleucodistrofia , Transplante de Células-Tronco Hematopoéticas , Substância Branca , Masculino , Humanos , Adrenoleucodistrofia/genética , Substância Branca/patologia , Células-Tronco Hematopoéticas/patologia , Terapia Genética , Transplante de Células-Tronco Hematopoéticas/métodos
11.
Lancet Neurol ; 22(2): 127-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681445

RESUMO

BACKGROUND: Adult patients with adrenoleukodystrophy have a poor prognosis owing to development of adrenomyeloneuropathy. Additionally, a large proportion of patients with adrenomyeloneuropathy develop life-threatening progressive cerebral adrenoleukodystrophy. Leriglitazone is a novel selective peroxisome proliferator-activated receptor gamma agonist that regulates expression of key genes that contribute to neuroinflammatory and neurodegenerative processes implicated in adrenoleukodystrophy disease progression. We aimed to assess the effect of leriglitazone on clinical, imaging, and biochemical markers of disease progression in adults with adrenomyeloneuropathy. METHODS: ADVANCE was a 96-week, randomised, double-blind, placebo-controlled, phase 2-3 trial done at ten hospitals in France, Germany, Hungary, Italy, the Netherlands, Spain, the UK, and the USA. Ambulatory men aged 18-65 years with adrenomyeloneuropathy without gadolinium enhancing lesions suggestive of progressive cerebral adrenoleukodystrophy were randomly assigned (2:1 without stratification) to receive daily oral suspensions of leriglitazone (150 mg starting dose; between baseline and week 12, doses were increased or decreased to achieve plasma concentrations of 200 µg·h/mL [SD 20%]) or placebo by means of an interactive response system and a computer-generated sequence. Investigators and patients were masked to group assignment. The primary efficacy endpoint was change from baseline in the Six-Minute Walk Test distance at week 96, analysed in the full-analysis set by means of a mixed model for repeated measures with restricted maximum likelihood and baseline value as a covariate. Adverse events were also assessed in the full-analysis set. This study was registered with ClinicalTrials.gov, NCT03231878; the primary study is complete; patients had the option to continue treatment in an open-label extension, which is ongoing. FINDINGS: Between Dec 8, 2017, and Oct 16, 2018, of 136 patients screened, 116 were randomly assigned; 62 [81%] of 77 patients receiving leriglitazone and 34 [87%] of 39 receiving placebo completed treatment. There was no between-group difference in the primary endpoint (mean [SD] change from baseline leriglitazone: -27·7 [41·4] m; placebo: -30·3 [60·5] m; least-squares mean difference -1·2 m; 95% CI -22·6 to 20·2; p=0·91). The most common treatment emergent adverse events in both the leriglitazone and placebo groups were weight gain (54 [70%] of 77 vs nine [23%] of 39 patients, respectively) and peripheral oedema (49 [64%] of 77 vs seven [18%] of 39). There were no deaths. Serious treatment-emergent adverse events occurred in 14 (18%) of 77 patients receiving leriglitazone and ten (26%) of 39 patients receiving placebo. The most common serious treatment emergent adverse event, clinically progressive cerebral adrenoleukodystrophy, occurred in six [5%] of 116 patients, all of whom were in the placebo group. INTERPRETATION: The primary endpoint was not met, but leriglitazone was generally well tolerated and rates of adverse events were in line with the expected safety profile for this drug class. The finding that cerebral adrenoleukodystrophy, a life-threatening event for patients with adrenomyeloneuropathy, occurred only in patients in the placebo group supports further investigation of whether leriglitazone might slow the progression of cerebral adrenoleukodystrophy. FUNDING: Minoryx Therapeutics.


Assuntos
Adrenoleucodistrofia , Adulto , Masculino , Humanos , Resultado do Tratamento , Adrenoleucodistrofia/tratamento farmacológico , França , Método Duplo-Cego , Progressão da Doença
12.
J Diabetes Complications ; 37(2): 108383, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610321

RESUMO

Deoxysphingolipids (1-deoxySLs) are neurotoxic sphingolipids associated with obesity and diabetic neuropathy (DN) and have been linked to severity of functional peripheral neuropathies. While l-serine supplementation can reduce 1-deoxySL accumulation and improve insulin sensitivity and sensory nerve velocity, long-term outcomes have not yet been examined. To assess this, we treated 2 month old db/db mice, a model of DN, with 5-20 % oral l-serine for 6 months and longitudinally quantified the extent of functional neuropathy progression. We examined putative biomarkers of neuropathy in blood and tissue and quantified levels of small fiber neuropathy, looking for associations between lowered 1-deoxySL and phenotypes. Toxic 1-deoxySLs were suppressed long-term in plasma and various tissue including the sciatic nerve, which is particularly targeted in DN. Functional neuropathy and sensory modalities were significantly improved in the treatment group well into advanced stages of disease. However, structural assessments revealed prominent axonal degeneration, apoptosis and Schwann cell pathology, suggesting that neuropathy was ongoing. Hyperglycemia and dyslipidemia persisted during our study, and high levels of glutathione were seen in the spinal cord. Our results demonstrate that despite significant functional improvements, l-serine does not prevent chronic degenerative changes specifically at the structural level, pointing to other processes such as oxidative damage and hyperglycemia, that persist despite 1-deoxySL reduction.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Hiperglicemia , Camundongos , Animais , Serina/uso terapêutico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/prevenção & controle , Esfingolipídeos , Suplementos Nutricionais
13.
Brain ; 146(4): 1420-1435, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36718090

RESUMO

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Assuntos
Paraplegia Espástica Hereditária , Animais , Criança , Humanos , Paraplegia Espástica Hereditária/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Mamíferos/metabolismo
14.
Brain ; 146(5): 2003-2015, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36315648

RESUMO

In the field of hereditary spastic paraplegia (HSP), progress in molecular diagnostics needs to be translated into robust phenotyping studies to understand genetic and phenotypic heterogeneity and to support interventional trials. ZFYVE26-associated hereditary spastic paraplegia (HSP-ZFYVE26, SPG15) is a rare, early-onset complex HSP, characterized by progressive spasticity and a variety of other neurological symptoms. While prior reports, often in populations with high rates of consanguinity, have established a general phenotype, there is a lack of systematic investigations and a limited understanding of age-dependent manifestation of symptoms. Here we delineate the clinical, neuroimaging and molecular features of 44 individuals from 36 families, the largest cohort assembled to date. Median age at last follow-up was 23.8 years covering a wide age range (11-61 years). While symptom onset often occurred in early childhood [median: 24 months, interquartile range (IQR) = 24], a molecular diagnosis was reached at a median age of 18.8 years (IQR = 8), indicating significant diagnostic delay. We demonstrate that most patients present with motor and/or speech delay or learning disabilities. Importantly, these developmental symptoms preceded the onset of motor symptoms by several years. Progressive spasticity in the lower extremities, the hallmark feature of HSP-ZFYVE26, typically presents in adolescence and involves the distal lower limbs before progressing proximally. Spasticity in the upper extremities was seen in 64%. We found a high prevalence of extrapyramidal movement disorders including cerebellar ataxia (64%) and dystonia (11%). Parkinsonism (16%) was present in a subset and showed no sustained response to levodopa. Cognitive decline and neurogenic bladder dysfunction progressed over time in most patients. A systematic analysis of brain MRI features revealed a common diagnostic signature consisting of thinning of the anterior corpus callosum, signal changes of the anterior forceps and non-specific cortical and cerebellar atrophy. The molecular spectrum included 45 distinct variants, distributed across the protein structure without mutational hotspots. Spastic Paraplegia Rating Scale scores, SPATAX Disability Scores and the Four Stage Functional Mobility Score showed moderate strength in representing the proportion of variation between disease duration and motor dysfunction. Plasma neurofilament light chain levels were significantly elevated in all patients (Mann-Whitney U-test, P < 0.0001) and were correlated inversely with age (Spearman's rank correlation coefficient r = -0.65, P = 0.01). In summary, our systematic cross-sectional analysis of HSP-ZFYVE26 patients across a wide age-range, delineates core clinical, neuroimaging and molecular features and identifies markers of disease severity. These results raise awareness to this rare disease, facilitate an early diagnosis and create clinical trial readiness.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Pré-Escolar , Paraplegia Espástica Hereditária/genética , Estudos Transversais , Diagnóstico Tardio , Proteínas/genética , Mutação
15.
Neurology ; 99(21): 940-951, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36175155

RESUMO

Pathogenic variants in the ABCD1 gene cause adrenoleukodystrophy (ALD), a progressive metabolic disorder characterized by 3 core clinical syndromes: a slowly progressive myeloneuropathy, a rapidly progressive inflammatory leukodystrophy (cerebral ALD), and primary adrenal insufficiency. These syndromes are not present in all individuals and are not related to genotype. Cerebral ALD and adrenal insufficiency require early detection and intervention and warrant clinical surveillance because of variable penetrance and age at onset. Newborn screening has increased the number of presymptomatic individuals under observation, but clinical surveillance protocols vary. We used a consensus-based modified Delphi approach among 28 international ALD experts to develop best-practice recommendations for diagnosis, clinical surveillance, and treatment of patients with ALD. We identified 39 discrete areas of consensus. Regular monitoring to detect the onset of adrenal failure and conversion to cerebral ALD is recommended in all male patients. Hematopoietic cell transplant (HCT) is the treatment of choice for cerebral ALD. This guideline addresses a clinical need in the ALD community worldwide as the number of overall diagnoses and presymptomatic individuals is increasing because of newborn screening and greater availability of next-generation sequencing. The poor ability to predict the disease course informs current monitoring intervals but remains subject to change as more data emerge. This knowledge gap should direct future research and illustrates once again that international collaboration among physicians, researchers, and patients is essential to improving care.


Assuntos
Insuficiência Adrenal , Adrenoleucodistrofia , Transplante de Células-Tronco Hematopoéticas , Recém-Nascido , Humanos , Masculino , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Consenso , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Insuficiência Adrenal/diagnóstico , Triagem Neonatal/métodos
16.
Commun Biol ; 5(1): 944, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085307

RESUMO

Very long-chain fatty acids (VLCFA) are critical for human cytomegalovirus replication and accumulate upon infection. Here, we used Epstein-Barr virus (EBV) infection of human B cells to elucidate how herpesviruses target VLCFA metabolism. Gene expression profiling revealed that, despite a general induction of peroxisome-related genes, EBV early infection decreased expression of the peroxisomal VLCFA transporters ABCD1 and ABCD2, thus impairing VLCFA degradation. The mechanism underlying ABCD1 and ABCD2 repression involved RNA interference by the EBV-induced microRNAs miR-9-5p and miR-155, respectively, causing significantly increased VLCFA levels. Treatment with 25-hydroxycholesterol, an antiviral innate immune modulator produced by macrophages, restored ABCD1 expression and reduced VLCFA accumulation in EBV-infected B-lymphocytes, and, upon lytic reactivation, reduced virus production in control but not ABCD1-deficient cells. Finally, also other herpesviruses and coronaviruses target ABCD1 expression. Because viral infection might trigger neuroinflammation in X-linked adrenoleukodystrophy (X-ALD, inherited ABCD1 deficiency), we explored a possible link between EBV infection and cerebral X-ALD. However, neither immunohistochemistry of post-mortem brains nor analysis of EBV seropositivity in 35 X-ALD children supported involvement of EBV in the onset of neuroinflammation. Collectively, our findings indicate a previously unrecognized, pivotal role of ABCD1 in viral infection and host defence, prompting consideration of other viral triggers in cerebral X-ALD.


Assuntos
Adrenoleucodistrofia , Infecções por Vírus Epstein-Barr , Herpesviridae , Adrenoleucodistrofia/genética , Antivirais , Criança , Infecções por Vírus Epstein-Barr/genética , Ácidos Graxos , Herpesviridae/genética , Herpesvirus Humano 4/genética , Humanos
17.
Cells ; 11(11)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681537

RESUMO

Mutations in the peroxisomal half-transporter ABCD1 cause X-linked adrenoleukodystrophy, resulting in elevated very long-chain fatty acids (VLCFA), progressive neurodegeneration and an associated pain syndrome that is poorly understood. In the nervous system of mice, we found ABCD1 expression to be highest in dorsal root ganglia (DRG), with satellite glial cells (SGCs) displaying higher expression than neurons. We subsequently examined sensory behavior and DRG pathophysiology in mice deficient in ABCD1 compared to wild-type mice. Beginning at 8 months of age, Abcd1-/y mice developed persistent mechanical allodynia. DRG had a greater number of IB4-positive nociceptive neurons expressing PIEZO2, the mechanosensitive ion channel. Blocking PIEZO2 partially rescued the mechanical allodynia. Beyond affecting neurons, ABCD1 deficiency impacted SGCs, as demonstrated by high levels of VLCFA, increased glial fibrillary acidic protein (GFAP), as well as genes disrupting neuron-SGC connectivity. These findings suggest that lack of the peroxisomal half-transporter ABCD1 leads to PIEZO2-mediated mechanical allodynia as well as SGC dysfunction. Given the known supportive role of SGCs to neurons, this elucidates a novel mechanism underlying pain in X-linked adrenoleukodystrophy.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Ácidos Graxos/metabolismo , Hiperalgesia/genética , Hiperalgesia/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Dor/metabolismo , Peroxissomos/metabolismo
18.
Muscle Nerve ; 66(2): 206-211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621349

RESUMO

INTRODUCTION/AIMS: Magnetic resonance imaging (MRI) of peripheral nerves can provide image-based anatomical information and quantitative measurement. The aim of this pilot study was to investigate the feasibility of high-resolution anatomical and quantitative MRI assessment of sciatic nerve fascicles in patients with Charcot-Marie-Tooth (CMT) 1A using 7T field strength. METHODS: Six patients with CMT1A underwent imaging on a high-gradient 7T MRI scanner using a 28-channel knee coil. Two high-resolution axial images were simultaneously acquired using a quantitative double-echo in steady-state (DESS) sequence. By comparing the two DESS echoes, T2 and apparent diffusion coefficient (ADC) maps were calculated. The cross-sectional areas and mean T2 and ADC were measured in individual fascicles of the tibial and fibular (peroneal) portions of the sciatic nerve at its bifurcation and 10 mm distally. Disease severity was measured using Charcot-Marie-Tooth Examination Score (CMTES) version 2 and compared to imaging findings. RESULTS: We demonstrated the feasibility of 7T MRI of the proximal sciatic nerve in patients with CMT1A. Using the higher field, it was possible to measure individual bundles in the tibial and fibular divisions of the sciatic nerve. There was no apparent correlation between diffusion measures and disease severity in this small cohort. DISCUSSION: This pilot study indicated that high-resolution MRI that allows for combined anatomical and quantitative imaging in one scan is feasible at 7T field strengths and can be used to investigate the microstructure of individual nerve fascicles.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/patologia
19.
Muscle Nerve ; 66(2): 223-226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616433

RESUMO

INTRODUCTION/AIMS: Nephropathic cystinosis is a lysosomal storage disorder with known myopathic features, including dysphagia. Evaluation of oropharyngeal swallowing physiology can be standardized using the Modified Barium Swallow Impairment Profile (MBSImP), a validated assessment tool used to analyze and rate swallowing across 17 distinct physiologic domains. Our objective was to better characterize swallowing impairments in nephropathic cystinosis using MBSImP analysis. METHODS: We retrospectively evaluated 40 video fluoroscopic swallowing studies performed at two time points over 1 y in patients with nephropathic cystinosis with various levels of oral and pharyngeal stage dysphagia. Patients completed two self-administered dysphagia outcome measures (the M. D. Anderson Dysphagia Inventory [MDADI] and the 10-item Eating Assessment Tool [EAT-10]). RESULTS: We demonstrated oral stage and pharyngeal stage dysphagia across domains that impacted bolus control, transit, and clearance through both the oral cavity and pharyngeal lumen. Also captured were deficits related to onset and completeness of laryngeal closure that impact airway protection during swallow. There were significant correlations between pharyngeal total score and EAT-10 (r = 0.5, p < 0.001) and between oral total score and EAT-10 (r = 0.7, p < 0.001), MDADI-e (r = -0.6, p < 0.001), MDADI-p (r = -0.5, p < 0.001) and MDADI-c (r = -0.6, p < 0.001). There were no differences in oral or pharyngeal total scores across the 1-y time span. DISCUSSION: This study identifies oral and pharyngeal stage dysphagia as crucial to patients with nephropathic cystinosis and paves the path for future studies of treatment targets.


Assuntos
Cistinose , Transtornos de Deglutição , Adulto , Bário , Cistinose/complicações , Cistinose/diagnóstico por imagem , Deglutição/fisiologia , Transtornos de Deglutição/diagnóstico por imagem , Transtornos de Deglutição/etiologia , Humanos , Estudos Retrospectivos
20.
Neurology ; 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35609989

RESUMO

BACKGROUND AND OBJECTIVES: We sought to characterize the natural history and standard of care practices between the radiologic appearance of brain lesions, the appearance of lesional enhancement, and treatment with hematopoietic stem cell transplant or gene therapy among boys diagnosed with presymptomatic childhood-onset cerebral adrenoleukodystrophy (CCALD). METHODS: We analyzed a multi-center, mixed retrospective/prospective cohort of patients diagnosed with presymptomatic CCALD (Neurologic Function Score [NFS] = 0, Loes Score [LS] = 0.5 - 9.0, Age < 13 years old). Two time-to-event survival analyses were conducted: (1) Time from CCALD lesion-onset-to-lesional enhancement, (2) Time from enhancement-to-treatment. The analysis was repeated in the subset of patients with (1) the earliest evidence of CCALD, defined as an MRI LS < 1, and (2) patients diagnosed between 2016 - 2021. RESULTS: Seventy-one boys were diagnosed with presymptomatic cerebral lesions at a median age of 6.4yo [2.4 - 12.1] with a LS of 1.5 [0.5 - 9.0]. Fifty percent of patients had lesional enhancement at diagnosis. In the remaining 50%, the median KM-estimate of time from diagnosis-to-lesional enhancement was 6.0 months [95%CI 3.6 - 17.8]. The median KM-estimate of time from enhancement-to-treatment is 3.8 months [95%CI 2.8 - 5.9]; two patients (4.2%) developed symptoms prior to treatment. Patients with a diagnostic LS < 1 were younger (5.8yo [2.4 - 11.5]), had a time-to-enhancement of 4.7mo [95%CI 2.7 - 9.30], and were treated in 3.8mo [95%CI 3.1 - 7.1]; no patients developed symptoms prior to treatment. Time from CCALD diagnosis-to-treatment decreased over the course of the study (ρ = -0.401, p = 0.003). CONCLUSION: Our findings offer a more refined understanding of the timing of lesion formation, enhancement, and treatment among boys with presymptomatic CCALD. These data offer benchmarks for standardizing clinical care and designing future clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...